April 22, 2025 05:10 pm (IST)
Follow us:
facebook-white sharing button
twitter-white sharing button
instagram-white sharing button
youtube-white sharing button
'Resume teaching without worrying': Mamata Banerjee to job losers camped outside SSC office | A great leader: JD Vance praises Modi after meeting him in New Delhi | ED summons southern superstar Mahesh Babu for questioning in money laundering case | Woman found dead with throat slit, ankles severed in Rajasthan's Sawai Madhopur; sparks outrage | Pope Francis, first Latin-American head of Catholic church, dies at 88 | Murshidabad violence: Supreme Court slams petitioner over irresponsible averments in plea | Family of Murshidabad riots victims decline Mamata Banerjee's compensation | Narendra Modi to visit Saudi Arabia next week, deepening multi-faceted partnership on agenda | Trump says US will 'take a pass' on Russia-Ukraine peace talks if parties make it difficult | Andhra student dies in accident in US' Texas days before her graduation

ATLAS and CMS experiments shed light on Higgs properties

| | Sep 01, 2015, at 07:28 pm
Geneva/Saint Petersburg, Sept 1 (IBNS): Three years after the announcement of the discovery of a new particle, the so-called Higgs boson, the ATLAS and CMS Collaborations presented for the first time combined measurements of many of its properties, at the third annual Large Hadron Collider Physics Conference (LHCP 2015).
By combining their analyses of the data collected in 2011 and 2012, ATLAS and CMS draw the sharpest picture yet of this novel boson. 
 
The new results provide in particular the best precision on its production and decay and on how it interacts with other particles. All of the measured properties are in agreement with the predictions of the Standard Model and will become the reference for new analyses in the coming months, enabling the search for new physics phenomena. This follows the best measurement of the mass of the Higgs boson, published in May 2015 after a combined analysis by the two collaborations.

“The Higgs boson is a fantastic new tool to test the Standard Model of particle physics and study the Brout-Englert-Higgs mechanism that gives mass to elementary particles,” said CERN Director General Rolf Heuer. “There is much benefit in combining the results of large experiments to reach the high precision needed for the next breakthrough in our field. By doing so, we achieve what for a single experiment, would have meant running for at least 2 more years.”

There are different ways to produce a Higgs boson, and different ways for a Higgs boson to decay to other particles. For example, according to the Standard Model, the theory that describes best forces and particles, when a Higgs boson is produced, it should decay immediately in about 58% of cases into a bottom quark and a bottom antiquark. By combining their results, ATLAS and CMS determined with the best precision to date the rates of the most common decays.

Such precision measurements of decay rates are crucially important as they are directly linked to the strength of the interaction of the Higgs particle with other elementary particles, as well as to their masses. 
 
Therefore, the study of its decays is essential in determining the nature of the discovered boson. Any deviation in the measured rates compared to those predicted by the Standard Model would bring into question the Brout-Englert-Higgs mechanism and possibly open the door to new physics beyond the Standard Model.

“This is a big step forward, both for the mechanics of the combinations and in our measurement precision,” said ATLAS Spokesperson Dave Charlton. “As an example, from the combined results the decay of the Higgs boson to tau particles is now observed with more than 5 sigma significance, which was not possible from CMS or ATLAS alone.”

“Combining results from two large experiments was a real challenge as such analysis involves over 4200 parameters that represent systematic uncertainties,” said CMS Spokesperson Tiziano Camporesi. “With such a result and the flow of new data at the new energy level at the LHC, we are in a good position to look at the Higgs boson from every possible angle”.

Support Our Journalism

We cannot do without you.. your contribution supports unbiased journalism

IBNS is not driven by any ism- not wokeism, not racism, not skewed secularism, not hyper right-wing or left liberal ideals, nor by any hardline religious beliefs or hyper nationalism. We want to serve you good old objective news, as they are. We do not judge or preach. We let people decide for themselves. We only try to present factual and well-sourced news.

Support objective journalism for a small contribution.
Close menu